
CS 0449 Notes:

C-Basics:

Hello, World:

Splashhhhh 💦

1) What are the similarities?
- Syntax looks similar (braces, semicolons, keywords)
- We use some kind of "print" function to write to the console
- We have "int"
2) What things are different?
- There's #include, which probably works something like import
- main returns a number for some reason
- There's no String[] args on main
- There's no class

Falling Down the Rabbit Hole:
1) If you compile that C program, you get an executable file
- what does that executable file contain?
- what happens when you run it?
- how does the program actually make things happen?
- how do programs control all the computer hardware?
- how do multiple programs run at the same time?
2) That's what this course is all about.

Oh yeah, gcc:
1) gcc is the C compiler we'll be using (the C analogue of javac)
2) To compile name.c to a program called name:

3) If you just do gcc name.c the output will be named a.out
4) You might see me type:

5) The up/down arrows on your keyboard go through recent commands!

Remarks:
-Wall and -Werror are good habits – catch lots of errors which would otherwise go
unnoticed

Oh yeah, thoth:
1) thoth is a server we've set up for you to do your work.
- You connect over the internet with ssh to run commands on it
- Your files are stored in a third place called AFS, which is universal to pitt (and in
fact many institutions)

C-Basics:

Appearances Can Be Deceiving:
1) C might look a bit like Java
- But it sure doesn't behave the same way

2) What does this print?
- It prints "alue of x is: "
- If you change x, it changes where in string it starts printing, but never prints x

The Training Wheels are Off:
1) C is weird and prickly and unforgiving and like 50 years old
2) You will probably hate it
3) But like this flower and the weird bird that matches it, C
and modern computers have coevolved
4) Understanding C is understanding how modern computers
work*

Which C?
1) C89 (ANSI C)
- Most portable, but annoying
2) C11
- New features not relevant for us here
3) We'll stick with C99 for this course.

OOPs:
1) Java is OOP: "object-oriented programming"
- that's fine, but...
2) If someone tells you that their way of thinking
will solve all your problems, they're lying.
3) Part of being an engineer is knowing what tool is
appropriate for the situation
- OOP is not always that tool
- C is not always that tool either!

Remarks:
1) This is general life advice too
2) People had OOP fever in the 90s and 00s, but we've come to realize that many
of its features are more trouble than benefit
3) Single-paradigm languages are annoying

Input and Output:

It’s a lot Shorter Than System.out.println()…
1) Instead of using + like in Java…
2) We use a format string with format specifiers

Remarks:
- You can absolutely use the "wrong" specifier
- If you have -Wall on, it will complain, but otherwise, it will compile and run and
do weird stuff

One Big Difference with Variables in C:

1) What will it print?
- Answer: you don't know.
2) Uninitialized variables in C can contain any value.
- Maybe 0!
- Maybe 2385!
- Maybe -100000!

-Wall catches so many things that are absolutely errors, it's just that C lets you
do virtually anything.

The Beginning of Weirdness:
1) How do you get a line of text input in Java with a Scanner?

2) It's… a little different in C

A Local Array:
1) Here's something that doesn't exist at all in Java:

2) It's an array of 100 chars, but…
- It works like a local variable
- It disappears when this function exits!

Þ This can be dangerous…
Þ because you can hand off that array to someone else, and then it can

disappear, and then who knows what will happen when they use it
3) You will see local arrays used often in C

f’getsaboudit:
1) Then we have this function call:

2) fgets = file get string
- That is, get a string (a line) from a file
3) stdin is C's name for what Java calls System.in
4) Here we see another common C pattern:
- Rather than fgets giving us an array…
- We ask fgets to fill in an array that we created

Remarks:
1) It’s like buying a bottle of water vs. carrying your own reusable one
2) Java is like buying a bottle of water
3) This is like carrying your own
4) But you have to watch out who you give your bottle to, and make sure they
don't overfill it!!

C-Functions:

Solving the fgets Problem:

Last Time…
1) We used this code to get a line of text from the user:

2) But there was a problem with 1_fgets.c…

3) Do you remember the escape characters from last time?
- One of the escape characters, \n, makes a newline…
4) Well, what's the last key you press after you type your name?
- enter/return makes the newline character!
- fgets is getting the line of text, INCLUDING the newline at the end

What the String Looks Like:
1) C Strings are weird…

Remarks:
1) Clearly the array slots go up to 99 but not enough room here :P
2) \0 is the escape sequence for the NUL character
3) Usually you don't have to write it, cause C will put it in for you in "string
literals" and the stdlib functions do it too
4) Every character is really just a number – and \0 is 0

Truncating (Shortening) a String:
1) If we want to remove one or more characters from the end…

2) You can put a zero terminator anywhere you want.

3) Where should we put it if we want to get rid of the newline character?

Remarks:
1) You can change the characters in a string, since it's just an array
2) Single quotes are character literals – a single character value, like \0
3) You could also write "input[4] = 0;"
4) The characters are still in the array – just "no longer part of the string"

Getting the Length of a String:
1) Do you remember how Java does it?
- someString.length();
2) In C, you have to count the characters until the terminator.
3) strlen() from string.h does this.

If you wanted to read another line, would you copy and paste this?

Remarks:
- C strings are arrays, and we saw there can be fewer characters in the string
(before the terminator) than in the array
- strlen() is an O(n) time operation – don't use it inside loops if you can avoid it

Functions:

What’s a Function?
1) A named piece of code with inputs (parameters) and outputs (return values, side
effects)
2) A really useful problem-solving tool

Remarks:
1) Java's static methods are functions!
2) The shorter code is more readable, and its purpose and effect are more
identifiable

Abstraction: What to do vs. How to do it
1) Abstraction is about hiding details: focusing more on the what and the why and
less on the how

Remarks:
- abstraction is how you will tackle the rising complexity of the problems we ask
you to solve
- abstraction also helps you solve problems even if you don't know all the details on
how to solve them yet
- remember: programming languages are there for YOUR benefit, not the computer's
- MAKE YOUR LIFE EASIER FOR YOURSELF

Call Graphs:
1) One way to structure a program is top-down:
- Start with the most abstract, and split it up over and over

Remarks:
- A call graph shows what functions call what other functions
- Having lots of arrows going *into* a function is good – means you are REUSING
CODE and REDUCING EFFORT
- Having lots of arrows coming *out of* a function is not good – means you are
REPEATING YOURSELF and CLOUDING THE MEANING

Too Much Code:
1) Think of a function as a scene in a play, show, movie:
2) Every line of code is like a new actor coming out and saying a line
- Just like a scene with too many actors and lines and actions is hard to
understand…
- …so, too, is a function with too many lines, and too many complicated lines

Naming:
1) Code is there for your benefit
2) Make it as easy as possible for you to read!

Remarks:
1) Two hard problems in CS: recursion, naming, and off-by-one errors
2) NAMES INDICATE INTENT AND PURPOSE.
3) if something really is temporary, name it "tempWhatever" to indicate its
PURPOSE.
- use "verb noun" for function names

Functions in C:

Let’s Make a Better fgets:
1) So, we have DECIDED to write a function for this, right? ;)

2) Some issues:
- How do you know how long to make the array?
- Can you even return an array in C? (no)
- If we can't return an array, how do you take one as an argument?
3) Well let's start with how we decided we want to call it:

Remarks:
1) User could want to get lines of different lengths
2) Local arrays are like local variables, and disappear when the function returns
3) Let's go top-down again: start with the *interface to the function* and then
figure out the details

The Function Signature:
1) We don't need it to return anything, so its return type is…?
- it returns void (just like Java)
2) The first parameter is an array, and the second is an int, so…

3) Nope, doesn’t compile…

4) Huh, that compiles, but…
- This doesn't do what you expect.
5) Here's something weird about arrays in C:
- They aren't real.

Remarks:
1) How would you write an array parameter in Java? (char[] input)
2) The second signature is NOT how we usually write it in C.

Arrays aren’t Real??
1) C doesn't treat arrays as "objects" the way Java does
2) Instead, C uses pointers
3) A pointer is a variable which holds a memory address
- We can access the data through the pointer

Remarks:
1) The array doesn't "know" how long it is
2) Pointers are a bit like Java references, but lower level
3) The pointer just specifies *where* something is, it doesn't specify how *big* it is

Arrays Become Pointers When Passed Into Functions:
1) and pointers are written like this:

2) Input is not a char, it's a pointer to a char
- The docs for fgets will show the same thing:

Remarks:
1) The pointer says "here is a place where you can put one or more chars"
2) any time you would write "sometype[] blah" as a parameter in Java, you write it
"sometype* blah" in C
3) Why does this happen?
An array can be HUGE – thousands or millions of items long. Far easier to say
"there it is" than try to move it around

Getting to the Point:
1) Here's how we'd write our get_line function:

2) and NOW we can use it like we want

Something Silly:
1) Let's try moving get_line after main:

2) It still compiles and runs, but... what.
3) C does not know about functions if you try to access them before you
declare them.
- If you do, it assumes they have the signature int name()

Þ Which is patently ridiculous but hey it made sense in 1971
Remarks:
1) The earliest C-like language compiler ran on a machine with 4KB of RAM
available
2) It could not read the entire program in at once; it could only read one line at a
time, and compile it right there
3) It could only "remember" things it had seen

Function Prototypes:
1) if you want to access a function before you declare it…
2) You can use a prototype:

3) It's the function signature, but with a semicolon instead of code.
4) Or, you can just reorder your functions :^)

Remarks:
- Reordering functions within a file is generally cleaner but prototypes are
sometimes unavoidable (mutually recursive functions)
- But usually, we put all the prototypes in a separate "header file"

Returning Arrays?

Would be Nice…
1) Couldn’t we do it in Java, like:

2) Well… yes and no, but DEFINITELY not with a local array
3) Returning an array like this is so bad that GCC will actually force your function
to return null if you try to do it directly
- So never

Þ ever
® do it.

C-Strings and Files:

Strings in C:

What do you get when you mix…
1) …arbitrary-length strings…
2) …whose length is only indicated by a special value…
3) …where forgetting that value leads to accesses past the end…
4) …in a language that has no array bounds checking?
- garbage
- I cannot overstress how terrible string manipulation is in C
5) strings are so bad in C that some people embed a Lua scripting language
interpreter in their programs just to have string manipulation that isn't prone to
massive security holes

Remarks:
- Like seriously, AVOID DOING HEAVY STRING MANIPULATION IN C.
- It is NOT the right tool for that job.
- Find a language that does it better. (that is, almost any other language in common
use today)

Why Do Banks Only Allow 12-Character Passwords?
1) The problem is multi-faceted:

2) If we try accessing past the end:

3) If we lose the NULL terminator:

- When there is no zero terminator, we will march right off the end of the array
and into unknown territory…

The Great Unknown:
1) You cannot know in advance how long an input string will be
- From the user
- From a file
- From the network etc.
2) There are practical limits but in general, you have no idea
3) So, how much space do you need?
- How do you allocate "enough" space?

Þ What do you do if you run out?
® Why is this so hard??

Initializing an Array of Characters:
1) The easy way is like so:

2) This:
- Allocates space for 100 characters
- Fills the first however many with that string
- Fills the rest with \0 characters
3) If you do this:

4) It is totally different. it:
- Puts "some string" in the static data segment
- Allocates space for a pointer
- Makes that pointer point to the static data segment
- Don't use this if you want to manipulate the string.
5) Every string argument to a function is gonna be a char* so that it can point to a
string anywhere.

Some String Functions:
1) The <string.h> header contains many string functions
2) strlen() … we saw last time!
- it has to look through the whole string for \0 every time
- So, do not call it inside a loop if you can avoid it.
3) strcmp() is another common one
- It compares two strings and returns a comparison value

Avoiding the Common Mistake:
1) What I like to do is:

2) Now we have a more sensible way to test for equality:

The Scary Ones: String Manipulation
1) strcpy(a, b) copies the string from b into the memory at a
2) strcat(a, b) copies the string from b into the memory after a

- "string concatenate" 🐈
3) To do this correctly, you would have to check the lengths before and after
every single string manipulation operation
a) Starting with the initial string mystr:

b) If we strcpy the string, “this” into mystr:

c) If we strcat the string, “is” into the modified mystr:

d) If we strcat the string, “BAD” into the modified mystr:

e) Overall, after String Manipulation, mystr is now:

How Do We Avoid That?
1) Just don't do string manipulation in C.
- Seriously.
2) There are absolutely ways to do it correctly
- Such as using a non-C-standard string representation
- Or writing long, complicated functions to handle all the cases
- but GEEEZ you have better things to do with your time

Files:

The File Paradigm:
1) A file is a big array of bytes
2) Each byte has an address position within the file, which
starts from 0
- Just like an array
3) But unlike an array, the file has current position
4) It starts at 0, and every time you read or write
something, it moves ahead
- Like an old-timey tape drive
- Or a notebook

What’s in a File?
1) The meaning of the data in a file is up to you.
2) A file format defines the structure and meaning of data in the file.

Remarks:
1) Who defines file formats?
- Whoever wrote the program that creates them.
2) Some file formats are open; many are closed (no documentation on them).
3) Reverse engineering closed file formats is a fun and enlightening pastime.

File Extensions are not Magical:
1) BY THE WAY, ENABLE FILE EXTENSION DISPLAY IN YOUR OS
2) A file's extension is just part of its name.
3) It has no effect on its contents.

Remarks:
- Opening this in PowerPoint would fail, since the format is completely wrong.
- But since it's no longer named correctly, other things that depend on it won't work
anymore…

Opening and Closing Files in C:
1) You open files like this (all this is in stdio.h):

- name is the name of the file
- mode must be one of the following:

Þ "r", "w" for reading or writing text files
Þ "rb", "wb" for reading or writing binary files
Þ "r+", "rb+" for reading AND writing files at the same time

2) Close them like this:

3) Donut 🍩 forget to close them!
- If you don't close them after changing them, your changes may or may not
actually end up in the file.

What is a FILE* Exactly?
1) It is not a pointer to the data in the file
2) Pointers are also used to point to objects
- C may not have built-in OOP facilities but it's still a common pattern!
3) You can't do anything with a FILE* besides pass it to functions which expect
them as arguments
- Like fclose()!
4) So, treat a FILE* as a sort of black box.

Reading and Writing Text Files:
1) Actually, we’ve seen this already!

2) This is because stdin and stdout (and stderr) are FILE*s too.
- printf("hi") is short for fprintf(stdout, "hi")
3) Wait… but how is the console a file?
- It's not stored in the file system
- It's kind of… created in real time? as the user types???
- Everything's a file.
- the concept of a "list/array of bytes" is a common and useful one, so many
things are "files"

Where are we?
1) ftell(f) gives the current file position (distance from beginning)
- This is measured in BYTES.
2) feof(f) tells you if you are at the end of the file (EOF).
- It's commonly used with text files, like…
- Reading all the lines from a file!

This is analogous to (in Java syntax):
while(scanner.hasNext())

scanner.nextLine();

Moving Around:
1) You move around the file with fseek(f, offset, how)

How Big is the File?
1) We can combine fseek() and ftell() to figure it out.
a) Initially, the file is at position 0:

b) After fseeking to the end of the file:

c) After ftelling:

d) After fseeking to the beginning of the file:

C-Structs, Enums, Typedefs:

Command-Line Arguments:

Oh yeah:
1) Remember public static void main(String[] args)?
2) Well you have those in C too

Remarks:
1) When you run a program from the command line, you can imagine it doing
"status = main(things, you, typed)"
2) To find out the status of a program (i.e. what it returned from main), you can use
the $? variable in bash
- Yes, a variable named $?

Þ Who the hell designed bash

Structs, classes' evolutionary ancestors:

Adding Some Structure:
1) You can think of a C struct as a class without most features
2) You can put data in it, and that's it

Remarks:
1) The semicolon is important and forgetting it will give you the stupidest flood of
compiler errors imaginable
2) The name that comes after the "struct" keyword is called the "tag" and is in a
separate namespace from all other names
- this is a really silly "feature" from the earliest days of C's development

The Memory Representation:
1) All the struct fields are allocated inside the struct variable

Alignment and Padding:
1) The C compiler is free to position your fields in memory any way
- it will keep them in the same order, though.
2) Typically, it will align the fields
3) Let's use offsetof() from <stddef.h> to see where they ended up

Remarks:
1) Memory Alignment means "n-byte values have addresses that are a multiple
of n"
2) Doubles are 8 bytes, so they must appear at addresses that are multiples of 8
3) Since doubles need to be 8-byte aligned, the whole struct must be a multiple
of 8 bytes, so that an array of this struct will keep their doubles aligned
4) the rules for alignment are kind of esoteric but can sometimes be useful for
laying out structs in a more memory-efficient way
- But it's not portable at all

typedef Struct:
1) Usually, you’ll see structs declared like:

Remarks:
1) You can leave out the struct tag name in this case, but it's fine to duplicate the name so
you can write things either way
- But what you shouldn't do is give it a different name and tag, like who does that

Typedefs:

OK What is That typedef Thing, Really:
1) typedef is a way of making a type alias
- In other words, a more convenient name for a type
2) The syntax of a typedef is a variable declaration…
- but with typedef in front.

Remarks:
1) In the same way that you can make constants that are convenient names for
important values
2) Now, when you write "typedef struct { … } Foo;" does that mean that "struct
{ … } Foo;" is a variable declaration?
- Yes. yes, it does. Foo is a variable whose type is… that struct.
- You can make these "anonymous" structs in C.

Þ Not terribly useful, but there they are.

aaaaanywaaaaaaaay Back to Structs:

Initializers:
1) You can initialize struct variables with a nice-looking syntax:

2) This is one of the few places C syntax is nice is in initializers, for some reason.

Field Access (The . Operator):
1) It works just like Java!
…or does it

Passing and Returning structs:
1) If you pass a struct to, or return a struct from, a function…
2) The whole struct is copied.

3) Passing structs by value can be very useful – if you want the same copying
semantics as e.g. ints and such

Passing structs by Reference:
1) Instead, often structs are passed as a pointer – "by reference"

2) & is the "address of" operator

Data Structures with structs:
1) Linked Lists, Trees, etc. have "nodes" that point to each other
2) To make a pointer inside a struct to the same type, you have to:

3) "unknown type name Node", "request for member 'blah' in something not a
structure or a union" etc etc etc

Enums:

Ah, Something Less Weird:
1) An enum is a way of defining (usually related) constants
- When I think of enums, I think of choices

2) Color is not really a special type; it's like another name for int
- I can write "int x = Red;" or "Color c = 45;", nothing is stopping me

Three Ways to Define Constants in C:

1) #define came first; then enum; then const
2) if you like typing a ton, const is your friend
3) #define is slightly different as it will do textual replacement of the names with
the values, but the end result is the same

Enums Indicate Intent:
1) When you choose to represent something a certain way…
- You are communicating to others that it has a particular meaning

Remarks:
1) if you use a switch() on an enum value, the compiler can detect if you've missed a
case!
- This avoids so many bugs!!!!!!
2) Often you will use an enum and never care about its int representations – cause
all you care about is the meaning of the constants.
- this is good. this is in general good. same with the other kinds of constants.

Binary Files and structs:

sizeof()
1) sizeof() is a compile-time operator which tells you how many bytes* something
takes up.

Remarks:
*it's actually the number of chars something takes up, but on any machine made and
in common use in the past 35 years, a char is a byte.
1) sizeof(int) is often 4. often. but not necessarily.
- In the 16-bit era, it was often 2.
- On 64-bit targets, it might be 4 or 8, depending on your compiler options and your
platform's conventions.
2) SIZEOF IS A COMPILE-TIME OPERATOR. IT CANNOT FIND THE SIZE OF
SOMETHING AT RUNTIME.

Reading and Writing Binary Files:
1) fread reads data and puts it into a buffer you provide. (like fgets.)

2) fwrite takes data out of a buffer you provide and writes it

3) You can do this with any type – arrays, structs, ints…

Remarks:
1) The second and third parameters are weird, they're "size of an item" and "how
many items" respectively
2) They will read/write size*number bytes, always
3) and since multiplication is commutative, you can technically pass them in either
order?
- It will have effects for the return value, though.

Þ If you care about it.

When you use fread/fwrite…
1) They just copy blobs of bytes directly between memory and the file
a) If you fread…

b) If you fwrite…

C-Pointers and Arrays:

What’s a Type?

Values:
1) Your programs deal with all kinds of values.

Remarks:
1) You can add 1 to the integer and the float, but not really to the others…
2) You can use [] on the string, but none of the others…

3) You can use . on the struct, but none of the others…
4) and no, you'd have to declare all these as different kinds of variables

Types:
1) Types are how we categorize values.
- We do this based on what we can do with those values.
2) Types are what you put in front of variable names.
3) What type is each of these values?

? – well, it's a const char*.

Type Constructors:
1) If you have a value, you can make a new value based on it.
- If you increment 5, you get 6.
2) If you have a type, you can make a new type based on it.

Remarks:
- You can stick [] on the end of anything to get "an array of that thing". that's how you
know it's a type constructor.
- Classes and structs are new types. the whole declaration is the "type constructor."
- Java also gives you generics: ArrayList<Integer> is a different type from ArrayList<Float>.

What are Pointers?

Memory!
1) Memory is a big one-dimensional array of bytes
2) Every byte value has an address
- This is its "array index"
- Addresses start at 0, like arrays in C/Java
3) For values bigger than a byte, we use consecutive bytes
- The address of any value, regardless of size, is the address of the
first byte (smallest address)
4) Here is an int variable
- What is its sizeof()?

Þ its sizeof() is 4 in this case - 4 bytes long
- What is its address?

Þ its address is 0xDC04
- What is its value?

Þ its value could be either 0xDEC0EFBE (big-endian) or 0xC0DEBEEF
(little-endian)

Lockers:
1) Think about a locker. what is its purpose?
- To contain things.
2) How are lockers identified?
- They're numbered.
3) How do you access a locker?
- By knowing the locker's number and combination.
- but for this example, let's assume there are no locks.
4) How would you give someone else access to your (lock-less) locker?
- Would you rip it out of the wall?
- No… you give them the locker number.

Like a Locker Room, But Without the Nudity:
1) Just like a locker contains things…
- Variables contain values
- But a variable is a thing itself
2) Each variable is like a locker:
- It has a number: its address
- It contains something: its value
- It belongs to someone: its owner
3) How do you give someone else access to your variable?
- You give them the locker number.

Þ Which is its memory address.
Variable names are just a convenient way to refer to their addresses!

Pointers:
1) If we put a slip of paper in locker 3 which says
"locker #2"…
2) Now we can access two things:
- The locker itself (3), and
- The locker that it points to (2)
3) A pointer is a variable which holds another
variable's memory address.
4) If you have a pointer, now you can access two
things:
- The pointer variable itself, and
- The variable that it points to
5) "every problem in CS can be solved with another
level of indirection."

Pointers in C:

Pointer Variables and Values:
1) Like Java's [], C's * is a type constructor:

2) You get the address of a variable with the address-of operator:

3) You can use it on just about anything with a name:

Remarks:
1) You CAN'T use address-of on "temporaries" (values without a name)
- e.g. &5, &&x, &f().. these are all invalid.

But What Does that Mean:
1) In this segment of code:
a) The statement, int* p = &x; does the following:

b) The statement, p = &x; does the following:

c) The statement, int** pp = &p; does the following:

Pointers and Arrays:
1) A pointer can point to one or more values.
2) A char* may point to a single char, or to an array of characters.
a) Initially, with the given code:

b) But now:

Remarks:
1) Lots of people get confused by this, and it's ok, because it's confusing.
2) It's just context. you have to know what it's pointing to, to know which it is.
- e.g. the char** given to main is an array of strings. it's documented that way, so
you treat it that way.
3) If you think about it, "pointing to a single value" is the same as "pointing to an
array of length 1"…

Multi-Dimensional Arrays:
1) We already saw single-dimensional arrays, but…

2) THIS IS ACTUALLY COMPLETELY DIFFERENT FROM AN "int arr[4][6];" OR
SOMETHING

Printing Pointers:
1) The %p format specifier is used to print pointers:

2) This prints a hexadecimal representation of a pointer.
3) Pointers can be null, too, but you have to YELL IT:

4) Weirdly, on Linux (which thoth runs), it prints "nil" instead of "null."
5) Oh, and one more thing…
6) In C, it's possible to have a pointer that is not null, but is invalid.
- Accessing an invalid pointer gives undefined behavior.
- It might segfault. it might mess up other variables. you don't know.

OK, We Get It, You’re Bizarre:
1) There is one kind of variable that behaves strangely with &
2) GUESS WHICH KIND

3) p1 and p2 are exactly the same here.
4) ONLY for array variables: you can get their address by using their name alone
or with the address-of operator.
- just… why?

Accessing the Value(s) at a Pointer:

The Value-At (or "Dereference") Operator:
1) * is the value-at operator - it's the inverse of &
- Every time you use it, you remove a star
2) It accesses the variable that a pointer points to
- We say that it "dereferences" a pointer
a) In the given code, p currently points to:

b) Changing the value of p (via dereference) does the following:

c) Printing out of the pointer’s value does the following:

Remark:
1) You'd think it'd be the other way… like, * would give you an int*, and & would
give you an int?
- Or maybe pointer types should be int&? like "address of int"?

That Stupid -> Operator:
1) If you have a pointer to a struct, you must access its fields with ->

Remarks:
1) The (*a).b syntax is there to show you that yes, it really is just using the
dereference operator underneath

The Array-Indexing Operators:
1) p[n] means "access the nth item pointed to by p."

Pointer Arithmetic:

It’s All Just, Like, Numbers, Man…
1) Pointers hold memory addresses.
- Memory addresses are numbers.
2) It's useful to do arithmetic on memory addresses.

- It prints '!'. because 𝒕 is pointing at the ‘!’.

Remarks:
1) There is no dereferencing happening in the pointer arithmetic.
- We are operating on the pointer itself.

What the Brackets Really Do:
1) p[n] in C really means "dereference address p + n"

Tipping the Scales:
1) Let's say we have an array of ints:

2) Let's say arr points to address 0xDC00
3) What is sizeof(int)?
- 4 bytes.
4) arr[1] means *(arr + 1)…
- but where is the next value? at 0xDC01?
- no. at 0xDC04.
- and arr[2] is at 0xDC08…
5) when you add an offset to a pointer, the offset is multiplied by
the size of the item being pointed to before being added to the
base address.
- this is called "scaling."

C-Scope, Lifetime, and the Stack:

More Pointer Stuff:

const Pointers:
1) For any type T, a const T* is a read-only pointer to a T
- You can read the data that it points to, but you can't write it
- You can however change where the pointer points to

2) const is a type constructor as well!

Pointer Casting:
1) casts convert from one type to another, like so: (type)value

2) You can cast pointers too

3) The computer does not care what bits represent
- This kind of cast does not change anything in memory

Þ f is still there and it still holds 3.567
- It only changes how we view that memory

Scope and Lifetime:

Scope:
1) scope is "where a name can be seen"
2) C has three levels of scope

Remarks:
1) "name" in this case refers to variables, but can also apply to functions in C, and
other things in other languages.

Global Variables are Terrible:
1) and you should almost never use them.
2) Almost any problem where you think you need one can be instead solved by using
a local and passing by reference.
3) There are legitimate uses for them, but…
- Unless you are being forced to use them…

Þ avoid them.

This goes for statics in Java too!

Lifetime:
1) Every variable takes up space in memory
- That memory must be allocated: reserved for the variable
- and when no longer needed, deallocated: released for other use
2) Lifetime is a little more subtle than scope...
- It's the time between allocation and deallocation
3) Global Variables last from program start to program exit
4) Local Variables only last as long as the enclosing function

Remarks:
1) Both kinds of globals do.
2) Lifetime and Scope are not the same thing, although the lifetimes and scopes of
locals and globals overlap.

You’re Watching the Lifetime Channel:

Ownership:
1) Ownership answers the question: who is responsible for deallocating a piece of
memory?
- Or: how do we determine when it's okay to deallocate memory?
2) Different languages deal with this in different ways.
- C mostly sticks its fingers in its ears, goes "LA LA LA," and pretends the problem
doesn't exist.
3) Locals and Globals are easy:
- Locals are owned by functions
- Globals are owned by the program
4) but…

Remarks:
1) Hey, C's a product of its time, and to be fair, ownership is a really tricky
concept to get right!
2) Rust seems to be doing a pretty good job of it, though.

If it Were Only That Simple:
1) In this Java code:
2) What is the scope of each variable?
3) What is the object's lifetime?
- It starts in func…
- But ends…
- ……where???????

Remarks:
1) We can't get around this.
2) Global/Local lifetimes are just not
flexible/powerful enough for many tasks.
3) unfortunately, beyond globals/locals, C totally screws it all up, oops

The Stack!!!

The Flow of Control:
1) When the caller calls a function, where do we go?
2) When the callee's code is finished, where do we go?

3) It doesn't matter if you use a return or not, when the callee finishes, it goes
back to the line after the call in the caller.

What’s the Stack?
1) It's an area of memory provided to your program by the OS
- When your program starts, it's already there
2) The stack holds information about function calls.
3) It's not a strict stack
- You can read and write any part of it
- But it grows and shrinks like a stack
- and we use "push" and "pop" to describe that
4) Each program* gets one stack
- Cause only one function is running at a time

* really it's each thread

Activation Records (ARs):
1) When a function is called, a bunch of data is pushed onto the stack
2) This is the call's activation record (or "stack frame")
3) It contains local variables (including arguments) and the return address

Remarks:
1) Somebody calls main.
- There's actually a few functions which run before main gets a
chance.
2) The return address is where to go in the caller, when this function
returns.

The Low-Level Layout:
1) Each variable (including array variables) gets enough bytes in the
AR to hold its value
2) Where the variable is located is up to the compiler

Call = Push, Return = Pop:
1) The stack grows when we call a function and shrinks when it exits

a) The program’s AR in main without any other function calls is:

b) After fork() is called, the AR becomes:

c) After knife() is called within fork(), the AR becomes:

d) After knife() is finished returning, the AR becomes:

d) After fork() is finished returning the AR becomes:

Recursive Functions:
1) Recursive functions work by using the call stack as an implicit stack data
structure
a) Given the following recursive function (factorial):

b) If fact(5) is called, the initial AR with fact(5) is:

c) After fact(5) is called, fact(5) calls fact(4), and the new AR is now:

d) After fact(4) is called, fact(4) calls fact(3), and the new AR is now:

e) After fact(3) is called, fact(3) calls fact(2), and the new AR is now:

We’ve now reached the base case, so the recursive function begins returning value,
and the call stack begins popping, until we’re left with:

Remarks:
1) This is why anything recursion can do, iteration can do:
- Recursion uses the call stack to store its data
- Iteration can use a separate stack data structure to store the same data

But They Don’t Really Go Away:
1) The stack is used constantly
- So, it needs to be really fast
2) So, we implement it as a pointer
- The stack pointer (sp)
3) Pushing the AR moves the sp down.
4) Popping the AR moves the sp up.
a) Initially, the stack pointer is:

b) After pushing onto the call stack, the stack pointer is:

c) After popping onto the call stack, the stack pointer is:

d) The AR’s memory is still there, so calling another function is BAD!

Calling a function -> Moves the sp.
Deallocate -> changing where the sp points to, the memory still exists, though.

Don’t Return Stack Arrays:
1) I think I showed this before

2) When func() returns, what happened to its
variables?
- You have no idea
3) You now have an invalid pointer
- It points to who-knows-what

Þ it might crash
® it might expose secrets

» who knows!!

C - Memory Management:

The Heap:

Two New Worlds:
1) Local variables are allocated… where, again?
- What is their lifetime (from allocation to deallocation)?

Þ Locals are allocated on the stack (within activation records), and their
lifetime is the body of the function

2) Global variables are put in the data segment
- This area is automatically allocated by the OS
- Its lifetime lasts for your entire program

Þ There is also a read-only data segment for constants
3) But the third place is new…ish
- New
- Like… new Object() kinda new

The Heap:
1) The heap is a programmer-managed area of memory
- It has nothing to do with the heap data structure
2) You can create and destroy pieces of memory on demand
3) This is a powerful ability!
- but remember…

Trainwreck:
1) The stack and heap both change size
2) The stack grows down (higher addresses to lower)
3) The heap grows up (lower addresses to higher)
4) If they meet, the program is out of memory
5) Why?
- Why not have the stack grow up and the heap down?
- Why not have them grow outward from the center?
- Why not have them both grow up or down?
- Why have them in the same area of memory at all?

Þ 64-bit architectures win here!
Þ In 16- or 32-bit address spaces, we don't have a choice

Remark:
1) Having the stack and heap grow towards each other allows for maximum memory
utilization, e.g. if you have a huge heap and small stack
2) The stack could grow up but for whatever reason we've settled on the stack
growing down in most architectures
3) In 64-bit architectures, the stack and heap addresses can be exabytes apart and
therefore will never, ever collide

The Functions:
1) The heap functions are in <stdlib.h>
2) To allocate memory, you use malloc:

- This allocates a 20-item int array on the heap
- malloc takes the number of bytes to allocate, makes a block of bytes at least
that big, and returns a pointer to it
3) When you're done with that block of memory, you use free:

Void Pointers:
1) If you look at the C stdlib docs...

2) An int* points to an int, a FILE* points to a FILE object…
3) A void* is a "universal pointer:" it can point to anything
4) A void* can be assigned any other type of pointer

5) You can't access the data from a void* without casting
- Seems kinda useless…

Allocating a struct On the Heap:
1) This is the closest to Java's new as C gets:

2) But just like anything on the stack…
- Everything you malloc contains garbage
3) To fix this you can use memset from <string.h>

- This says "fill the memory at f with 0s"
4) orrrr use calloc() instead of malloc()

- This says "allocate 1 * sizeof(Food) bytes and fill them with 0s"

Remarks:
1) It's garbage for the same reason the stack contains garbage: it's old, dirty, used
memory

The Caveats:
1) If you do this:

2) Your program will run out of memory
- But you won't get an error
- This will loop forever because…
- If you run out of memory, MALLOC RETURNS NULL

The Caveats (Continued):
1) and what’s worse:

2) Who knows what'll happen!
3) When you free heap memory, all pointers to it become invalid, and it's your
responsibility to never use them again
- So, if multiple things point to this memory...
- well, they're allowed to point to it, but they better not access it.

Þ It's like a bomb rigged to explode when you dereference it.
4) Here's another kind of invalid pointer: it used to point to some valid heap memory,
but not anymore.

The Heap Commandments:

VLAs (in C99+):

Variable-Size Convenience; Automatic Deletion!
1) Modern C code can allocate variable sized pieces of memory on the stack,
instead of the heap

2) This is a C99 feature, called variable-length arrays (VLAs)
- It's still on the stack!
- Which gives you automatic lifetime!
3) Well these are great! why don't we use them for everything??

Well, You Can, But Watch Out:
1) On most systems, stack space is limited.
- On Unix systems like thoth, ulimit -s tells you the limit
- On thoth, it's only 10 MB
2) This doesn't solve the problem of "ownership."
- In cases where it's obvious that the data won't need to stick around after this
function, VLAs work fine.
- But if you need to hand this pointer off to someone else... or if you need the data
to stick around for longer...

Þ You're asking for trouble.

What’s Garbage Collection?

Messy, Messy:
1) Let’s say you had a linked list:

a) If the head is made NULL:

b) What happened to our linked list?
- Well nobody is pointing to that list anymore.
- Where does it go…? NOWHERE.

Dynamic Memory Management is Hard:
1) Don't believe anyone who says otherwise
2) But mathematically, it’s not a very hard problem
- if only we had some kind of automatic, programmable machine that could do it for
us L

Þ …………………………………………………
- Oh wait! WE DO!!

A Touching Story:
1) There are two useful concepts from GC: roots and reachability
- GC = Garbage Collection

Pruning Time:
1) If we remove the only link to an object…

- We can cause a whole graph of objects to become unreachable by removing only
one link.

Get a Rake:
1) C, on the other hand, is stupid. If we cut the last link:

This is a MEMORY LEAK:
1) In C, if heap memory becomes unreachable, it’s a memory leak.
- We can never deallocate it. it's like it "leaked out" of your program.
2) The only way to deallocate it is to exit your program.
- All your program's memory is deallocated when you exit.
3) Decades of research have gone into making GC useful!
- Never take it for granted!
- Well, now that you’re using C, you’ll learn not to…
4) There are other "flavors" of memory leaks
- "a cache without a removal policy is just a memory leak in disguise"

OS – Memory Allocation:

How Does the Heap Work?

The Basic Idea:
1) The heap is a big piece of memory

2) Allocating memory (malloc) slices off pieces of it

3) Deallocating memory (free) removes pieces, leaving holes

4) Now we want to allocate a new thing on the heap...

- Where can we put it? D:

Remarks:
- Unlike a stack, parts of the heap can become "free" in the middle, instead of only
at the end

External Fragmentation:
1) "holes" – empty spaces that are too small to be useful – are bad
2) This is external fragmentation:
- The free memory is split into lots of small fragments
- External because the free memory is outside the allocated blocks

An Impossible Problem:
1) Given a finite space, and a number of items to fit into that space, find the
optimal way to pack those items to minimize wasted space
- This is the bin packing problem and it's NP-hard!
2) Dynamic memory allocation is an online variant of this problem
- "online" means "we can't predict the future"

And Yet:
1) Life is about making things that aren't perfect, but are good enough
2) So, let's lay out the boundaries of the problem at hand:
- When you free memory between two blocks, it leaves a hole
- Holes are bad. (we don't want a swiss cheese heap)
- We can ask the OS for more space if absolutely needed...

Þ ...but memory space is not infinite

The Memory Allocator’s Job:
1) Keep track of what space is being used and what space isn't
- The memory allocator can have "secret" information that the client program
doesn't see
- "Used" means "the client hasn't freed it"

Þ Whether the client is actually using it or not is another story…
2) Allocate Memory by finding unused (free) spaces
- and of course, marking that space as used
3) Deallocate Memory by turning a used space into an unused space
- So that it can be reused!

Bitmaps:

Movie Time:
1) You and your friends are seeing a movie.
2) There are 5 of you.
3) You get to the theater and…
- How do you tell if a seat is taken?

Þ A seat is taken if someone is sitting in it
- What are you looking for?

Þ You're looking for a block of 5 seats in a row.
- How can you "reserve" a seat?

Þ You can reserve a seat by putting something in it, like a coat or purse or
whatever.

4) A bitmap is like this.

Keeping Track:
1) If we divided up the heap into uniformly-sized chunks:

2) What's a simple way to say which are used and which are free?
- Use a boolean (true/false) per chunk!
3) We can use one bit for each, and pack all those bits into one int
- 11011100 011011112 = 0xDC6F
4) This is a bitmap
- The bits are a map of the heap
- Bitmaps are forced to use uniform size chunks.
5) Let's say each chunk represents 64 bytes
- 64 × 16 chunks = 1024 bytes of memory
- But the bitmap to represent it is only 2 bytes
6) We have to store the bitmap elsewhere, but whatever.

Allocating:
1) The chunks are 64 bytes, and I do malloc(100)
2) What do we have to do with the bitmap to find that free space?

3) We've got to find at least 2 0s in a row
- Where's that?
- There it is!

4) and then to mark them as used, we have to…
- Set those bits to 1s

Deallocating/Freeing:
1) How do we deallocate (free) the rightmost group of chunks?

2) Just set those bits to 0s.

3) Now, the next time we want to allocate something that takes up 2 to 5 chunks,
we have a nice free space for it.
4) So, what's the catch?
- Since the bits are adjacent to one another, whenever you set some bits to 0, you
"automatically" get bigger blocks of free memory

A Glass Half-Full:
1) With 64-byte chunks, when we did malloc(100)…
2) How much space did we mark as "used"?
- 2 chunks, or 128 bytes

- It's like someone putting their purse on a seat and not sitting there. do you
REALLY need a whole seat for your purse?

A Glass Full of Foam:
1) If we made the chunks smaller to better fit the allocation…
- With 16B chunks, we could allocate 112B, only wasting 12B
- But that means four times as many chunks in the same space
- Which means the bitmap is four times bigger
- Which means there's less space to store interesting stuff
2) No matter what, we're going to waste a lot of space inside chunks.
3) Also, "find a sequence of n 0 bits inside an integer" isn't very fast

Something Else:

Entropy:
1) What do you notice about the pattern of 1s and 0s here?

2) Seems silly to store a bunch of 1s, then 0s, then 1s...
3) What if we did this instead:
- Record the exact sizes of each contiguous block
- Then link em together… into a list

Did This Improve Anything?
1) How big was the bitmap for this? 2 bytes?

2) Now we have 3 linked list nodes
- Each of which has an int (4 bytes?) and a pointer (4 bytes?)
- 8B × 3 nodes = 24B to store the nodes
- 24 bytes vs. 2 bytes for the bitmap

Þ this seems like a loss??

Welllll:
1) This looks bad for small examples, but for a bitmap…
- With 64B chunks, a 1MB allocation would need 16,384 chunks

Þ that's 2 kilobytes of 1s in the bitmap
- Could make chunks bigger to make the bitmap smaller…

Þ But that worsens internal fragmentation
2) Linked List avoids internal fragmentation by measuring in bytes
- Always make a block exactly the size it needs to be
3) In the worst case, a linked list uses more memory than a bitmap
- But in the average and best cases, it uses far less.

Remarks:
1) Bitmap grows linearly in the number of bytes used
2) Linked List grows linearly in the number of allocations (blocks)
3) Depending on the average size of blocks, the linked list or bitmap can be more
efficient – but for memory, linked list almost always wins.

Pay the Piper:
1) Linked Lists change size. So, where do we allocate it?
- We can embed the list within the free and allocated blocks

2) Every block starts with a header that includes the size, pointer, and its status
(used or not)
3) So, a 100B block will take up maybe 112B total:
- 12B for the header
- 100B for the space the user asked for
4) The allocator is the only one who sees these headers.

Allocation Algorithms:

Tabula Rasa:
1) When your program first starts up, the heap looks like this:

2) If we want to start allocating stuff, what's the most obvious way to allocate?
- Slice off a part of the beginning of the free space each time
3) But we're using a linked list, and there are now 6 nodes in it

Tabula... Not-So-Rasa:
1) In the middle of the program, the heap will look more like like this:

2) Now we want to allocate a block like this:

3) How do we find a spot where it will fit?
We're using a linked list...
- We could start at the beginning of the heap, looking for a spot
- When we find a spot big enough, that's where it goes
4) This is called first-fit cause it puts it in the first spot it fits.
5) how long does it take to find that free block?
- It's linear in the number of blocks
- You might have to search through thousands of blocks each time…

The Bigger Picture:
1) With first-fit, the heap will often end up looking like this:

2) Everything's clustered around the beginning. this is good actually!
- Cause it leaves us with a nice big empty space
3) But…
- There are lots of holes
- The holes will likely be small and therefore useless (wasted)
- We waste a lot of time looking through those small holes before we get to that
big empty space

Þ why start from the beginning every time?

Next-Fit:
1) What if we start looking from where we last allocated a block?
2) Next-Fit makes it faster to find a block, but spaces things out more:

3) Since it starts from the last allocation, it spreads things out and misses what
might be good spaces earlier in the heap

A Square Peg in a Slightly Larger Square Hole:
1) Let's say our heap looks like this, and the orange block is the most-recently-
allocated one:

2) Now we want to allocate this:

3) Where would first-fit put it?

4) Where would next-fit put it?

5) But what place(s) would make more sense (arguably)?
- Here, because the free space is closest to the right size?

This is best-fit.
6) Here, because it'll leave a bigger block of free space?

This is worst-fit.

The Best of Intentions:
1) Neither of these schemes really makes things any better
2) Best-Fit will leave tons of tiny unusable holes

3) Worst-Fit will "clump" allocations better, but tends to leave several similarly-
sized large holes that all gradually get smaller

4) and worst of all, both of these algorithms force us to look at every free block
in the heap on every allocation
- how could we fix that?

Remarks:
1) Best-Fit can stop early by finding an exactly-sized hole for the desired block,
but Worst-Fit HAS to look at all the free blocks.

OS – Memory Deallocation:

Let’s Revisit This:

You Can't Always Get What You Want:
1) Let's say the user did malloc(60)
a) Initially the block of memory looks like:

b) If we allocate a 100B block:

 c) This results in Internal Fragmentation: Trapped free blocks

Splitting a Free Block:
We want to give them exactly 60 bytes.

1) Count 60B into the block and put a new header there

2) Do 100-60-sizeof(header) to get the size of the new free block

3) Insert the new header into the linked list

4) Update the old header to the new size and mark it used

Extending the Heap:

Mentioned Last Time:
1) The stuff on the heap is entirely managed by your program.
2) But the "real estate" that the heap occupies comes from the OS.
3) When your program needs more heap space…
- You can ask the OS to E X P A N D H E A P
- it may or may not allow that to happen!

Heap Deallocation:

A Lot Easier:
1) Turning a used spot into a free spot is easier than finding one was.

OK, There’s a Problem:
1) What if we end up with two free blocks in a row?

- Even though we have 2 free blocks in a row with >120 bytes of space, we couldn't
give it to them.

Coalescing:
If we end up with adjacent free blocks, we can coalesce them.
- coalesce = smoosh all together

1) Sum the sizes of the two blocks + sizeof(header)

2) Remove the middle header from the linked list.

3) Update the first header with the new size.

Can You Have More Than Two Free Blocks in a Row?
1) Yep, if you free a block between two free blocks.

a) Coalescing the first two free blocks yields:

b) Coalescing the new free block with the third free block yields:

Remarks:
1) If you think about it, if you do this every time you free, you will never have more
than 3 free blocks in a row.
2) Any case where you would have ≥4 blocks, it could only arise if you forgot to
coalesce on a previous free.

Making Allocation Faster:

Expect the... Expected:
1) If you graph the size of allocations against the frequency of those allocations
(how many blocks of that size are allocated) you get:

Musical Chairs:
1) Think of it like… chairs of different sizes.

- That giant chair is internally fragmented!!

Quick-Fit:
1) Instead of using a single linked list for the whole heap....
2) Let's have multiple lists, based on size.

Throw it in the Bin:
1) A quick-fit scheme keeps several bins of varying sizes
- Maybe based on powers of 2
- Maybe linearly spaced
- Who knows
2) You can think of each bin as a "set of free blocks in that size range"
3) Allocation becomes much faster, as we can immediately know if there's a block of
the "right" size
4) On deallocation, we insert the newly-freed block into the right bin
5) This is a pretty cool time-space tradeoff!

Hey!! This is like Radix Sort!!

Reducing External Fragmentation:

Expect the… Expected:
1) This graph again…

Adult Swim:
1) If our program is going to need 10,000 128-byte objects, let’s just preallocate
1.28MB of space – we call this a pool
2) We can very quickly slice new allocations off the pool

3) When objects are deleted, this leaves nicely-sized holes

4) A pool paired with a quick-fit allocator can be really fast.
- but what’s the downside?

You Can’t Please Everyone:
1) This kind of memory pooling doesn’t work in the general case
- It works great for some programs and terribly for others!
2) The allocator either has to:
- Know about it in advance; or
- Adapt dynamically

Þ Which means doing more work during allocation
Þ Which means slowing down allocation

3) The default glibc malloc does some pooling by keeping pools of small objects
after they’ve been allocated and freed
- It tries to balance several factors, so it’s kind of a well-rounded memory allocator
without being the best at anything

Þ it's the Mario of mallocs

Heap Compaction??

Move Down!!!
1) You're trying to parallel park

Intractable:
1) Let's say we have this situation:

Tractable:
1) Instead of pointing directly to the heap, we make EVERY pointer…

Remarks:
1) It's slower
2) It requires you to only access the heap through this double-pointer mechanism
3) You cannot rely on things "staying put" (which is sometimes important)

Wellllll Guess What, We Can't Do it in C:
1) Java does this…
- because they designed it from the start to be able to do this.
2) Doing this requires:
- Perfect knowledge of where every block is
- No pointers to the "insides" of blocks
- No access to the heap without these double-pointers
3) I guess you could do this in C if you were reaaally disciplined
- But there's absolutely nothing preventing you from messing up.

C – Multi-File Development and make:

Efficient Function Calling:
1) If you have three functions to run in a row, it's tempting to do:

2) So, a calls b, and b calls c.
3) Don't do this.
4) Instead, do this:

Also Stop Putting Linked List Crap in Your Higher Level Functions, Okay??
1) Almost all the special cases in the allocator come down to linked list manipulation
2) Abstract it
3) Call it from other functions
4) It will make your life so much easier

The Preprocessor:

1) Compilers were really, really dumb and simple programs
2) An easy hack was to use a preprocessor
3) It's a text processing system that can do textual substitutions
- it's automated copy and paste.
4) You can see the results of preprocessing with gcc -E
5) You tell the preprocessor what to do with directives
- These are the lines that start with #

The #include Directive:
1) #include is so stupid
2) It copies and pastes the entire contents of the given file right there

<angular> or "quoted":
1) .h stands for "header"
2) #include <filename.h>
- Means to include a standard library header

Þ or sometimes an OS header
3) #include "filename.h"
- Means to include some other header

Þ Your headers, third party libraries, etc.
4) What's in these .h files???
- We'll see shortly.
5) and that's all we'll say about the preprocessor for now.

Multi-File Compilation:

The Old Ways:
1) Each C source file is compiled independently
2) C calls this a translation unit: one source file à one object file
3) Multiple translation units are then linked to make one program

Remarks:
1) As you might imagine, running gcc 1000 times to compile 1000 files is pretty
slow.

Never the Twain Shall Meet (until linking, anyway):
1) Each .c file is like its own private island

Headers!
1) each compilation unit usually has a header file

2) The header is a compilation unit's public interface
- …and the source file is its private implementation
3) Each source file includes its own header
- and they can include headers of other compilation units
4) Each source file can only see what other headers expose to it.

The General Form a Header:
1) If you wanna write users.h, it would look like:

2) What the heck is that preprocessor crap
- Let's take it out and use gcc -E to see what happens if we include this file twice
3) This preprocessor stuff is called an include guard
- IDEs and stuff will put one there for you

Remarks:
- Without the include guard, if you end up accidentally including a header twice
(such as through nested includes), you will get redefinition errors
- There is also #pragma once which is supported by virtually every compiler and
virtually no one uses it

Header Do’s and Don’ts:

Remarks:
1) Basically, headers contain all the non-code non-private bits.
2) If you don't want someone else to use it, don't put it in the header.

Simple Shell Scripts:

Who's Tired of Typing gcc -o blah blah…
1) A shell script is a file containing a list of shell commands
- In fact, it's a whole programming language
2) It's a text file whose name ends in .sh and contains the following:

3) The first line is called the shebang
- # is hash, ! is bang

Þ ssssssshhhhhhhhebang
- It says which program to execute this script with
4) /bin/sh is almost always what you want
- But you could e.g. make a python script and use /usr/bin/python

build.sh
1) If you've got a very small program, maybe something as simple as this will be
sufficient for building stuff:

2) Once you create a file like this, you have to make it executable
- Use chmod to change the mode of the file:

3) Now you can run it like any other program!

Remarks:
1) If you find yourself typing any complex command over and over, make yourself a
shellscript like this

Command-Line Arguments:
1) Sometimes this is useful
2) $1, $2, $3 etc. are argv[1], argv[2], argv[3] etc.
3) $@ will be replaced by all the command-line arguments
4) So, I could write a more flexible build.sh like so:

5) Now, I can run it like:

But For Anything More Complex…
1) Don't learn bash. seriously.
- It is an awful hack of a programming language.
2) Use a real language, like Python or Ruby or whatever.
- All you have to do is put the interpreter path in the shebang.
- Use which programname to find the path to any program.

make:

Incremental Compilation:
1) Compilation and Linking actually take time. sometimes a lot.
2) Repeating compilation of unchanged files is a waste of time
3) Incremental compilation only recompiles the sources which have changed, while
reusing previously-compiled object files
- Say we only changed one.c…

- This is basically a necessity for anything bigger than the tiniest toy programs.

Build Tools:
1) A build tool is a program that simplifies building programs
2) make is the classic build tool
- Other examples are cmake, scons, ant, cargo…
3) Build tools can help you compile…
- Only the file you changed (incremental compilation)
- Multiple versions (debug, release, 32-bit, 64-bit…)
- A whole directory without listing every file
4) and they can handle other steps, such as…
- Converting data files between formats
- Setting up operating system-specific files (icons, resources etc.)
- Installing your program

They're super flexible, is what I'm saying.

It Depends:
1) Build tools are based on the idea of dependencies

OR

make is a Programming Language:
1) I mean, why not, right? :P
2) It's a declarative language – you describe what, not how.
3) A makefile consists of several rules
4) Each rule contains a recipe – the commands which satisfy the rule

Remarks:
1) Well, you describe "how" but only as parts of "what" declarations
2) The counterpart of declarative is imperative – you describe how, step-by-step,
rather than what
- All the languages you are likely to have encountered so far fall into this
category.

More Complex Dependencies:
1) Of course, things are usually more complicated

- It knows the dependencies because gcc has options for extracting the
dependencies

Dependencies and Targets:
1) The way we indicate dependencies is with this syntax:

2) The target is the thing being built
3) The dependencies are what it needs to exist before this rule is run
4) The commands are run to create the target from the dependencies
- They are just normal shell commands.

Remarks:
1) Your text editor's syntax highlighter will take care of the tabs for you, probably.

Generic Targets:
1) We can make all .o files depend on .c files with:

2) Then for the commands:
- $< refers to the dependencies
- $@ refers to the target:

3) gcc -c says "produce an object file instead of an executable."
4) You can remember $@ by thinking it looks like $🎯

An Example makefile:
1) The makefile has to be named Makefile, with a capital M
2) You can have many targets in one makefile
3) A very common target is clean, which cleans up build results
- Things like object files, temporary directories, etc.
4) To make a target, just run

5) Like:

Programs – Debugging:

Writing Fewer Bugs in the First Place:

Removing the Training Wheels:
1) As your programs get bigger…
- You cannot write them all at once and then compile and test.

2) The faster you can make this cycle, the faster and more correctly you can
write code.

Writing Smaller Functions:
1) Smaller functions have fewer things to go wrong
2) They have more well-defined purposes
3) It's easier to encode assumptions (inputs and outputs)
4) It's easier to see the control flow
5) It's easy to see all the places they're used
- It is totally okay to write a function that is called exactly once.
- Functions label your code. they indicate your intent.

Wall the Werrors:
1) Always try to use -Wall -Werror with gcc.
2) In any other language, turn on all the error checking you can.
3) While developing, enable debugging info. (gcc -g)
4) Your brain is squishy and can't handle everything.

WRITE TESTS:
1) Ideally, you write a test for each of your small functions

Using the Right Programming Language:
1) All languages are more robust in some areas than others.

Results:
Inputs: Succeeded Failed:
Good V X
Bad X V

So, Something Went Wrong:

Step 1: Admitting You Have a Problem:
1) A crash is an obvious indication that something is wrong.
- In C, you can use a debugger (gdb) to get a stack trace.
2) But many problems don't lead to a crash…

3) Programs are proofs (thanks, Howard-Curry isomorphism!)
- and like a proof, you can make mistakes in your assumptions or proof rules; you
can do great for several steps and then oops.

printf("x = %d\n", x);
1) You can absolutely use prints or logging frameworks (e.g. Log4J in Java) to spam
informational messages as your program runs
- Logging frameworks let you have a "severity" for each message
- "Debug", "info", "warning", "error", "fatal"
2) If you don't already have prints, using a debugger to follow control flow is
probably easier than writing a bunch in there.
- Especially since you have to remove/comment them out later.

Step 2: Determining the Cause:
1) Once you pinpoint the location…
- The cause may or may not be obvious.

- We probably shouldn't be adding the y coordinate to the width… we probably
meant to swap width and height too.
- What if x == 0?

Check Your Assumptions:
1) Assumptions are "shoulds"
- "When I enter this function, what should the parameters be?"
- "When I return this value, what should it look like?"
- "After this search loop, what should be in this variable?"
- "When this method runs, what state should the object be in?"
2) Assertions are a great way to catch bugs early during development
- Java has em. C has em.

Working Backwards from Crashes:
1) When a program crash…
- Fairly often, that specific line is not at fault.
- It's because some earlier code broke things, and your program kept running for a
while until things finally crashed.

Þ Like a ticking time, bomb.
2) Look at what happened immediately before.
- Set breakpoints earlier than the crash and re-run the program.
- Check out what's happening at those breakpoints.
- Then step closer and closer to narrow down the actual error location.

Finding Bugs Faster:

IDEs:
1) IDEs can continually compile and find errors
- They can make suggestions to fix them
- or show help on functions while you write so that you don't make mistakes to
begin with
2) IDEs can be a helpful tool…
- but they can also be "helpy" - "I'M BEING HELPFUL!!!!!!"
- They can also be so complex that you just get overwhelmed by all the settings
and features.
3) Probably the nicest feature of IDEs is an integrated debugger
- No need to use arcane typed commands

Debugger Breakpoints:
1) A breakpoint lets you pause the program and look around.
2) In gdb:
- b func will pause whenever func is called.
- b mymalloc.c:45 will pause when line 45 of mymalloc.c is reached.
- b *0x8004030 will pause when the PC gets to address 0x8004030.
- b location if x == 5 will pause at a location but only if the condition is satisfied.
location can be any of the above.
- tb location is a breakpoint that only happens once – it's deleted after the first
time it's hit. (you can make these conditional too.)
3) Check out the breakpoint features in your IDEs!

Watchpoints:
1) Sometimes a variable gets set to some weird value and you don't know where or
when it happens.
2) A watchpoint is like a breakpoint, but it pauses whenever a variable is about to
be written (or read, or both).
3) In gdb:
- watch globalvar will pause when a global variable is changed.
- watch localvar will only work when you are paused in a function, and it will last
until the local variable goes out of scope.
- rwatch and awatch work the same, except they pause when a variable is read
(rwatch) or on all accesses (awatch).
4) You can't set a condition on these, sadly…

Programs: Calling Conventions:

Calling Conventions:

So, I just met you I'm sorry:
1) The stack holds activation records; calls push an AR; returns pop
- but what about the rest of the machinery?
2) Remember what's in an AR?
- return value, local variables, arguments (a kind of local variable)

What is a Calling Convention?
1) It's how functions call one another… in machine language.
- They are an honor system to make functions work together.
2) One of the reasons we made HLLs was to abstract this machinery
3) But when dealing with low-level software, it inevitably comes up.

Something in one.c tries to call something in two.c, but if they use different
conventions, it'll crash at runtime.

Universal Truths:
1) You're pretty much always gonna have…

The General Idea:
A function call consists of…
1) Putting the arguments and return address in the right place(s)
2) Jumping to the new function
3) Setting up the activation record on the stack

A function return consists of…
1) Putting the return value(s) somewhere
2) Cleaning up the activation record from the stack
3) Jumping back to the return address

How MIPS Does It:

Because the stack grows down, pushing them in reverse order means that they will
be in order in memory.

On the Callee’s Side...
1) Once we're inside, we have more to do

2) 5th and 6th arguments are at sp+20 and sp+24
3) MIPS does have another register – fp – which is used to deal with this more
elegantly, but it is not strictly required for proper operation.
 - proper operation. properation.

Pack it Up:
1) Then, to return…

2) The stack must be balanced – at the same position before and after the call.

Crash Course on IA-32:

x86? IA-32? x86-64? x64? AMD64? EM64T?
1) x86 is currently the most popular architecture in personal computers
2) IA-32 is the 32-bit version released in 1985
3) x86-64 (or x64 (or AMD64 (or EM64T))) is the 64-bit version released in 2000
- But x64 is kinda complicated
- So, we'll stick with with IA-32
4) It's a CISC architecture
- So, it has lots and lots of instructions
- But those instructions are flexible and kinda human-oriented

Þ It's a little easier to read/write than MIPS in some ways

IA-32 Registers:
1) There are… 8.

Very Common Instructions:
1) mov copies data around. it's really flexible.

2) The first 4 movs would be li, move, lw, and sw in MIPS
3) Whenever you see [brackets], that means "access memory at the address inside
the brackets."
4) You can access memory in MANY instructions, not just mov!
- The only restriction is that you can't access memory in both operands.

Accessing the Stack:
1) There are two ways.

2) The push/pop instructions are more "human-oriented" which means they can be
less efficient to run than the equivalent sequence of sub/mov/add.
3) push does a sub esp, 4 followed by mov [esp], reg.
4) pop does a mov reg, [esp] followed by add esp, 4.
- So, the code on the left does 2 subs and 2 adds, while the code on the right only
does 1 sub and 1 add.

Calling and Returning:
1) The instructions are… call and ret.

This doesn't return 12!!!

The IA-32 cdecl Calling Convention:

Calling a Function:

1) Usually no arguments are passed in registers because there are so few registers!
- With a common exception: ecx is often used for 'this' in OOP languages like C++.

Function Prologue:
1) Here's some weird stuff.

2) ebx/edi/esi are like the s registers in MIPS – push and pop if you need to use
them.
3) Call pushed the return address, and then we pushed ebp.
4) Then we made ebp point at the value that was just pushed, so the arguments
start at ebp+8.
5) Since we subtracted 16 (0x10) from esp, the arguments also start at esp+0x18
(+24).

Function Epilogue:
1) Similarly, strange.

- In the MIPS example, the stack was balanced at this point, but not here…

Prologue and Epilogue Instructions:
1) x86 has the enter and leave instructions as shortcuts for… these.

Caller Cleans!
1) The last part is making sure the stack is balanced.
2) In cdecl, the caller cleans the arguments off the stack.
3) So, a full, balanced call might look like:

Peeking Under the Hood:
1) Let's compile 12_asm_test.c with these flags: -m32 -g
2) Now we can run it in gdb and disassemble main:
- gdb 12_asm_test
- disas main
3) oh god. oh no. oH GOD this looks horrible
4) x86 has two ways of writing assembly
- Cause, like, of course it does
5) The GNU tools default to AT&T

6) The Much Better One is… INTEL SYNTAX

7) gdb can switch between them with set disassembly-flavor intel

Peeking Under the Much-Easier-to-Read Hood:
Now let's see how main calls f with disas /m main
1) /m shows the C source if it's available
2) The DWORD PTR just says "this is a 32-bit load/store"
3) Apparently x is on the stack at esp+0x1c
4) What register does the return value come out in?

Let's look inside f to see how it computes its return value
1) When it accesses the arguments, it uses [ebp+offs]…
- What the heck is ebp?
- and what is that stuff at the beginning?
- and why is the first argument at offset 8 instead of 0?

Return value comes out in eax.

The Last Piece:

The Base Pointer Register:
1) esp is the stack pointer: it marks the bottom of the AR
2) ebp: "base pointer" – marks the top* of the AR
3) When we first came into f, the call instruction just pushed
the return address, so the stack looks like:
4) Then we have this weird sequence:

5) push saves the old value of ebp:

6) mov makes ebp point to that old ebp

7) and now.... uh........ um.......... what did that do?

It's a Linked List of ARs!
1) ebp is the pointer to the head of a linked list
2) Every AR stores a pointer to the top of the AR of
the function that called it
3) When the function is about to return, it does:
 mov esp, ebp
 pop ebp
4) This "unlinks" the AR from the list
5) This is used for unwinding
- or getting a stack trace
- this is how the "where" or "bt" commands in gdb
work: by following the base pointers!

MIPS has an analogous register, fp

Programs – Preprocessing, Compilation and Linking:

The Compilation Toolchain:

The General Process:

Nothing to Lose but Your Chains:
1) The compilation toolchain is the sequence of programs that you use to go from
programming-language code to an executable file

The Preprocessor, Redux:

Header Files (*.h):
1) Remember:
2) The header file is the public interface
- NO CODE!!!
3) The C file contains the implementation
- ALL THE CODE!!!
- and any private structs, enums etc.

The #define Directive:
1) #define is… weird
2) You can make constants-ish

3) Whenever you write NUM_ITEMS…
- The preprocessor will textually replace it with 1000
4) This is not a variable!
5) You can make it replace it textually with anything

6) You can replace any word-like thing with anything

7) Never do this :P

Conditional Compilation:
1) We can choose which code to compile, based on some condition
2) One very common condition is "has this preprocessor name been #defined?"

3) The "not-taken" side of the if-else will literally not even be in the resulting
program
- There is also #ifndef for "if not defined"
4) This is super common in platform-specific code
- or "optional features"

How Include Guards Work:
1) These weird things in header files prevent double-inclusion.

#define With Parameters:

1) This is a preprocessor macro
- It looks like a function
- You can write it like you're calling a function
- But it's all text replacement

2) It's easy to get yourself into trouble with macros if you use a parameter more
than once…
- Lots of parentheses (b/c reasons)

The Preprocessor is Weird:
1) C/C++ are really the only modern languages which have it
- Cause it's, uh, suboptimal
2) These past few slides cover like 95% of what you will ever need
3) I hope you never have to deal with it too much.

The Compiler:

How Does a Compiler Work?
1) It's, uh, complicated.

Take CS1622:
1) All that really matters:

Object Files:

Blobject Files:
1) For every C code file the compiler takes, it produces one object file
- Doesn't matter how many headers it includes
2) By default, it hides these files from you, but…
3) gcc -c will output the object files
4) The file command in Linux is very useful
5) So, what's IN an object file?
- Let's try objdump -x

Þ WOAH WHAT

Anatomy of an Object File:
An object file has several sections (or segments)
1) The .text segment contains...
- The machine code
2) The .data segment contains…
- Global variables

Kinds of Data:
Three kinds of data segments actually
1) .data is for globals
- int globe = 100;
2) .bss is for globals initialized to 0
- int arr[100];
- There's no need to store 0s
- So, it's a bit of optimization
3) .rodata is for read-only data
- "hello there"
- If you try to change the values here…

Þ You get a segfault!

A Map! But That Looks Like… a Closeup of an Object File:
1) Then there's the symbol table
- "symbol" means "name"
2) This is a list of all the things in the file
- Their name
- What they are (function, var, etc.)
- Which segment they're in
- Their address
- and some other stuff
3) But it also lists some things NOT in the file

Linking:

Puzzle Pieces from the Clay:
1) Object files are an incomplete part of a whole, like a puzzle piece

The Adventure of Link:
1) A library (or archive) is just a collection of object files.

A Link to the Past:
1) The linker takes all these pieces and links them
together.
- The result is… an executable!
2) Let's use objdump -x on an executable
- There's not really much difference
3) The only real difference between an object file and an
executable is "does it have everything it needs to be run?"

Linker Errors:
1) When the linker is putting your puzzle together, things can go wrong.

Static:
1) On functions, static is very similar to private in Java
- Static means "do not export this to other compilation units"
2) Let's put static before print_message in sub_island.c, compile, and
see what happens when we try to link
3) Let's see what nm sub_island.o prints
- nm lists names.
- Lowercase t means it's a local symbol- It's contained within
sub_island.o and no one else can see it

extern:
1) leaving static off a function makes a "bump"
2) extern makes a "hole"
- It has no effect on functions at all
3) The only time you need to use extern is on global variables that are shared
across files.
- Global variables are bad enough, but shared globals?
- NEVER.
- EVER.
- DO.
- THIS.
- OKAY?

Programs – Dynamic Linking and Loading:

More about Linking:

Will the Real printf Please Stand Up?
1) Linking is (weirdly enough) done by name

2) Here we can have the "wrong" printf linked into our program…

Every File’s an Island:
1) Source files in C don't actually know anything about each other…
- So, it's the linker's job to match up the names between files.
2) Here we have two C files which we can compile with -c
- 14_innocent.c
- 14_bad.c
- It whines a bit but does work
3) You can use the nm program (name) to see the symbol tables

The Output of nm:
1) Each symbol has a type
2) There are many but:
- T is a bump: an exported Text symbol
- U is a hole: an Undefined symbol

Þ It needs to be imported
- D is a bump: an exported Data symbol
3) You might see where this is going
4) …yes, the linker really is that dumb
5) Lowercase t and d are local (static) symbols
contained within the object file but neither imported nor exported

Just Mash it in There:
1) name == name?? OKAY!!
2) you can link with gcc too
- gcc -o bad bad.o test.o
3) aaaand now we have a program
that crashes
4) Cause it's trying to execute an
integer in the data segment

Function Pointers:

Point to Anything:
1) We can have pointers to data anywhere in memory
2) Why not to functions, too?
3) A function pointer is................. gee, I dunno. what do you think
4) in C, it looks... terrifying

Typedef is Your Friend:
1) What is this?

2) uhhhhhhh
- THIS IS A REAL TYPE.
- Pointer to a function which takes a const char*, and returns an array of function
pointers, each of which takes two floats and returns a float
3) typedef is nice to use when making function pointer types

Why Function Pointers?
1) You can pass functions as arguments to other functions
- This is a very powerful technique
- You can parameterize actions just like you can with values
2) Let's look at 14_qsort.c and 14_qsort_structs.c
- This is what your lab 5 is about!

These are Not New to You, Actually:
1) Java implements function pointers indirectly by having you implement interfaces
- Like Comparable!
2) But the interface solution is a bit limiting…
- What if you want to be able to sort an array of objects in five different ways?
you only have one interface method.
3) So more modern versions of Java give you more freedom.

Dynamic Linking:

There’s a Hole in my Heart:
1) What if we left the holes in the executable?
- Like leaving out a piece of a puzzle
2) This is a technique called dynamic linking
3) Basically, we leave the last step of linking
unfinished
4) When we run the program, then we find that last
piece(s)

Dynamic Linking:
1) Many programs need printf. why duplicate it?
2) So, we put e.g. the C standard library (libc) into a special object file
- A shared object (*.so) file
3) The loader is responsible for doing this final linking step
- In fact, on Linux, the linker and the loader are the same program

Static Linking:
1) If you make a whole puzzle with no holes – that's static linking
2) There are two main downsides of static linking:
- Bigger executables
- It can embed bugs into your executables

Þ libc ain't perfect
Þ If it has a serious bug, the only way to fix

your program is…
Þ Recompile and redistribute.

3) Statically linked executables can be loaded more
quickly and have no dependencies, so they're more
self-contained and easier to distribute

Pros and Cons:
1) With dynamic linking…
- We can just fix libc.so and now any program that uses it is automatically "fixed"
2) But...
- Fixing bugs can break programs.
- Shared libraries can have multiple versions
- If the shared library can't be found, the program won't run

Suppose a program erroneously depends on a buggy library function
1) You fix that function in the shared library
2) And now the program crashes cause now that function correctly returns NULL
instead of an invalid-but-it-never-crashed pointer

Dynamic Loading:

Time, time, time:
There are three times when we can put a library into an executable
1) Link-time (static linking)
2) Load-time (dynamic linking)
3) Run-time (dynamic loading)

Dynamically Loaded Libraries:
1) A dynamically loaded library is just like a shared
library…
- But the application decides which shared objects to load
- And when to load them!
- While it's running!!
2) This is often used to load optional functionality
- Usually called plugins

Asking the OS:
1) To dynamically load a library, we have to ask the operating system
- It will invoke the loader for us
- Once it's loaded, we can get function pointers to the functions inside.
2) What interface (or "API") a plugin uses are defined either by the host program
or by some standard

Programs – Loading and Running an Executable:

Executables and Loading:

What the Heck is in an Executable File?
1) Pretty much the same stuff as an object file
- Machine code ("text")
- Data
- Symbol table(s)
- OS-specific info
2) objdump can inspect executables as well!
- This is because they use the same file format

Þ Well, on most flavors of UNIX anyway...

Executable Formats:
1) Different OSes use different formats for their executable… things
2) Each of these formats is broadly similar, but each operating system works
differently and so can require different information
- Don't remember this table, it's just here for demonstration

The Final Countdown:
1) The last step is loading
2) The loader is the part of the OS that, uh, loads the executable

Processes:

All My Children:
1) A process is the in-memory representation of a program, all its data, its
resources (like open files), etc.
2) The OS's main responsibility is controlling access to resources
3) The OS wants everyone to play nicely

4) and if they don't...
- It's lights out for the process

5) ps and pstree let you see what processes are running
6) OS controls resources
- Abstracts
- Protects
- Allocates

Stuck in Your Teeth:
1) The kernel is a process too, but…
2) It's special
3) Basically, this is the program that makes the OS work
4) It makes every other process believe that they are the only program running
on the whole computer. (it lies)
5) It's also allowed to do anything it wants.
- …which means a malicious program gaining access to the kernel is a very bad
situation
- Malware: A program taking control of the kernel

Address Spaces:
1) Each process gets its own address space
- Its own little memory compartment
- Processes can't access each other's address spaces
or the OS's
2) Old CPU architectures did this with memory
segmentation
- This is where "segfault" comes from
- They literally sliced up the memory and gave each
process a piece
3) But these days we do something a little more
complicated (and flexible)
4) Kernel puts each process in its own address space

Virtual Memory:

Virtual Memory:
1) Virtual memory abstracts memory addresses.
- The addresses each process accesses are not the real addresses sent to the
memory.
- Virtual memory is the basis for so many things

How?
1) Virtual memory is a feature of the CPU hardware

🐍🐍🐍🐍🐍🐍🐍🐍🐍🐍🐍🐍🐍🐍🐍

Shattered Memories:
1) Physical memory is a scarce resource
2) the OS splits memory into pages: small chunks that
can be given to processes
- Usually these days, a page is 4KiB
3) The OS keeps track of which parts of memory
belong to which process
- Since we have equally-sized chunks…
- How do you think the OS keeps track of which
pages are used/free? ;)

Þ a bitmap!

One Process’s Address Space:
1) Here's an address space that a process sees
2) The code (or the text segment) usually resides at the bottom of
memory (the lowest addresses).
- (not usually at address 0, though)

Þ (0 is NULL and we want that to be invalid)
3) Then comes the global (static) data segment
- The code and globals are basically copied directly from the
executable file
4) But the stack and heap weren't in the executable
5) Where'd they come from?
- The loader also set those up for us!

Looking at a Process’s Memory Map:
1) The memory map is the arrangement of the address space.
2) You can get a process's pid with ps…
3) ...and then use this to print its memory map: pmap -x pid

Segfault -> accessing a piece of virtual memory that does not map to a real piece
of memory

Honey, I Broke the Heap:
1) Processes can ask the OS for new pages
2) When they're done with them, they can give pages back
3) This is what [s]brk() is actually doing!

OS – System Calls:

The OS:

The Responsibilities of the OS:
1) Resource Control.
- It's the gatekeeper to all the computer's
resources
2) Process Control.
- It makes everyone play nice
- It can kill broken/evil processes
3) Hardware Abstraction.
- Since processes must ask OS to access resources
on their behalf…
- The OS can make processes believe things that
aren't real

Walled Cities:
1) The OS kernel is a program – a process – that
manages all the rest
2) It can access any resource and control any other
process
- How do we keep that power from falling into the wrong
hands?
- And how do we do it on a computer with only a single
CPU??

Þ How do we even run multiple processes on a single
CPU

Abstraction is fancy lying.

Building the Castle:
1) CPUs can run in (at least) two modes:
- User Mode, for running "untrusted"
processes
- Kernel Mode, for running the kernel (duh)
2) User Mode is very restricted:
- Many instructions are illegal
- Most of the memory is off-limits
- Hardware can't be accessed
3) So… how do we switch modes?

System Calls:

System Calls:
1) A system call is a special kind of function
call that user-mode processes use to ask the
OS to do something for them.
- If the OS is the castle wall…
- Then syscalls are a gate
2) System calls are a CPU feature
- Since it must switch modes

System Call CPU Mechanisms:
1) You learned how to do them in MIPS
- It's…. syscall
2) In IA-32, it’s int or sysenter
- int doesn’t mean integer!
- It means interrupt (we'll come back to those)
- Older versions of Linux use int 0x80
- Newer versions use sysenter
2) On both, you put the syscall number in a certain register
- This identifies which operation the process wants to perform
3) The arguments get passed as usual
4) Then you perform the system call instruction
5) and then…

Opening the Portal:
1) Switching modes causes a few things to happen

The Upside-Down:
1) Kernel code is pretty similar to user code
- There are some restrictions, like no libc
- But you can do special things
- Like accessing other processes’ memory spaces
2) This is how it sees the parameters to the system call – they’re
on the user stack

Switching Tracks:
1) When the kernel is done handling a syscall…
- It could return to the user process
- Or it could switch to another user process!
2) This is how one CPU can run many processes
3) At any given moment, it's only running one
- But over time, they all get some attention
4) The OS is like a juggler

Context Switches:

Barreling Down the Track:
1) A context switch is when the CPU changes
modes
2) But the CPU is like a train:
- High speed in a straight line
- But slow to change directions.
3) So, we have this annoying problem:
- We need the OS to do anything
- But system calls require a context switch, which is slow.

Layer Cake:
1) User programs usually look like this:
2) The layers in the middle do a good bit of work
trying to make as few system calls as possible.
3) As an example, let's look at a common one:
buffered I/O

Don’t Do It All At Once:
1) There is a fixed overhead for context switches
2) So, if we can do more work per switch, we can reduce their impact
3) Let's say we're writing to a file.

An Example with fgets():
1) If the user types in more text than there's room for in your array…
2) The rest of the line is still in the input buffer, and the next call to fgets will
get that buffered data
- It will not wait for you to type more!

The POSIX API:

The POSIX API:
1) POSIX stands for
Portable Operating
System Interface.
2) (the X just looks
cool.)
3) POSIX was defined as
a universal API for all
the flavors of UNIX,
which Linux
(mostly) implements as
well.
4) This is why it was
needed.

The POSIX API:
1) Linux and macOS (mostly) implement POSIX
- But historically not Windows, cause Windows

Þ But I guess that's changing-ish.
2) It's based on this idea: what if everything were a file
- Hard drives? Files.
- Displays? Files.
- Keyboards? Files.
- Processes? Files.
- Files?..............................

Þ Files.

The Big Unifying Concept:
1) Everything on the system is represented in this big tree
2) The root of this tree is is /, which is called… the root directory
3) The internal nodes are directories, and the leaves are files
4) Directory names always end in a /
5) We can also have symbolic links
- They're basically pointers.

Þ When we access /bin/sh on thoth, it’s really accessing
/bin/bash.

Accessing the “File” System:
1) There are four main system calls, and they look familiar-ish…

2) These are the real deal – when you call these functions, you are talking directly
to the OS!
3) There is no FILE* here. that is a <stdio.h> abstraction.
4) open() returns a file descriptor instead.
- This is just an integer which uniquely identifies the open file.

The Standard Input/Output/Error Files:
1) Every process on a POSIX system is given these
three files when it starts.
2) Java names these System.in, System.out, and
System.err.
3) Notice that their file descriptors are 0, 1, 2.
- Starting at 0 and going in order…

World 7:
1) A pipe connects the output of one process to the input of another.
2) Let’s try ps aux | less
3) Here’s what’s happening:

Watching it Go:
1) We can see all the system calls a program makes as it runs using the strace
command.
2) Let’s strace a simple “hello world” program.
- execve is the call the actually runs the program. (sorta.)
- brk is used to see where the heap begins. (hey, that's familiar!)
- mmap (memory map) is a more modern way to dynamically allocate memory, and
can also be used to read/write files.

Þ It’s part of the virtual memory system.
Þ mprotect lets you change the access rights on memory areas.
Þ munmap gives the mapped memory pages back to the OS.

- fstat gets information about an open file.

OS: Process Creation and Deletion:

POSIX Process Creation:

Mitosis:
1) In the beginning
- When a UNIX/Linux system first starts, the only process running is init
2) The way every process starts in POSIX is
by splitting off from another process
3) The POSIX function is fork()
4) The original process is the parent, and the newly-forked process is the child
5) Just like when cells split:
- Both processes are completely identical
- Same code, same data, same everything

Þ Even where they're executing is the same…

The Process Tree:
1) Since each process is started by another…
2) We kinda end up with a process "family tree"

Process Identifiers (pids):
1) Every process has a unique numeric identifier, its pid
- init has a pid of 1, always.
- You can see the pids with pstree -p
- The POSIX function getpid() gets the pid of the current process
- getppid() gets the pid of the current process’s parent
2) You use pids as arguments to process-management syscalls
- Like waitpid()
- and kill()

fork() is weird:
1) Let’s look at an example of fork()
2) We can use strace -f to watch the syscalls from both processes
3) When you do a fork()…

These are Happening “At the Same Time!!”:
1) I think what really hangs people up on this "it returns different values in each
process" thing is that these processes are running in parallel
2) BOTH the parent AND the child will start running the SAME code, starting on the
line after the fork().
- The only difference is what the return value was.

WHAT IF YOU CALLED FORK() IN A LOOP:
1) DON’T,
- lol
2) this is a forkbomb – so many processes spawn that the
computer grinds to a halt
3) It’s usually accidental, but can be used as a form of DoS
(denial-of-service) attack
4) Don't do it on thoth
5) A recursive function is still a loop.
- I can kill forkbombs but it will make thoth unusable for
you and everyone else.

Changing Identities:
1) Making clones of the same process isn’t that useful
2) We transform a child process with one of the exec*() function

Error Handling in C:

What Does it Mean:
1) If you look at the manpages for execvp, it says this:
- If any of the exec() functions returns, an error occurred.

Þ The return value is -1, and errno will be set to indicate the error.
2) You’ll see similar descriptions for fork, open, close, read, write…
- A return value of -1
- Something called “errno”
3) In Java, if you try to open a file that doesn’t exist, what happens?
- FileNotFoundException
4) But C has no exceptions

In-Band Signaling:
1) The C Way™ to report errors is to return some impossible value
- For many* POSIX functions, this is a negative number
2) In addition, syscalls (and some C library calls!) can put a value in a global
variable (!) called errno (short for “error number”)
3) The Proper Way to Handle Errors™ looks like:

“You Mean We Have to Do That On EVERY syscall?”
1) YEP.
- I mean, unless you want a crashy, insecure program ¯_(ツ)_/¯
2) Be sure to read the errors that a syscall can produce, then:
- Handle the ones you care about; and

Þ Fail gracefully for the errors you don’t handle
3) The simplest method is “whine and exit.” use strerror or perror:

Don’t Forget to Exit After exec*():
1) One of the easiest ways to forkbomb is to have a loop where you fork and
exec…
- But you don't exit() if exec fails.
- SO, DO THAT. ALWAYS.

POSIX Process Destruction:

Apoptosis, Necrosis, and Lysis:
1) There are three main ways for a process to end:

2) "Apoptosis" means "programmed cell death" – a cell decides "it's time for me
to die."
3) "Necrosis" means "a cell dying due to some kind of malfunction" – it got too
old, or it ingested some poison, etc.
4) "Lysis" means "a cell being killed by another cell" – like a white blood cell or a
predatory cell.

Exit Status:
1) When your process terminates normally, you can give an exit status
- Return it from main, or pass it as a parameter to exit().
2) Just like you can pass parameters on the command line…
- You can get the exit status with the $? variable.

./prog a b c -> $?prog(a,b,c)

What Happens After a Child Process is Spawned:
1) You've got the parent and the child processes, and…

If the Child Terminates Before the Parent:
1) The parent can find out how the child terminated with waitpid()
2) Let’s see an example of a child process exiting two ways…
- 17_waitpid.c shows this
- and your next lab will have you practice with it
- What are these mentions of “signals”?

POSIX Signals:

Polling vs. Asynchronous:
1) Polling means “asking over and over if something happened”
2) Asynchronous means “being notified when something happens”

What’s a Signal?
1) A signal is an asynchronous way the OS notifies your program of certain special
events
2) This happens outside the normal flow of execution.
- Signals are kind of like Java exceptions…
3) When a signal is sent, the program runs a signal handler

Good Signals to Know:
1) SIGSEGV is your best friend, the segvfault!
2) SIGFPE is when a mathematical error happens.
3) SIGINT is the ctrl+C interrupt.
- By default, it stops the program.
- But you can make it do whatever you want!
4) SIGTERM: "hey, time to quit, just letting you
know J"
- This is clicking the X button on the window
5) SIGKILL: お前はもう死んでいる
- The process is instantly killed.
- This is force closing from the task manager.
- This signal cannot be handled or ignored.

Þ (the others above can be!)
6) “Segmentation Violation" is why it's SIGSEGV
7) SIGFPE = Floating Point Exception, but it
happens for integer divides by 0 too…

Handling Signals:
1) You can catch signals by setting up a signal handler of your own
2) The signal() function is a little old-fashioned but can do this:
- The first argument is the signal to handle
- The second is one of these things:

Þ SIG_IGN to ignore the signal;
Þ SIG_DFL to perform the default action;
Þ or a function pointer to a handler function.

» This will be called when that signal is sent.
3) There is a much more powerful function, sigaction(), for setting up custom
handlers
- but my god it has a lot of options.

Sending Your Own Signals:
1) You can send signals from your program with the kill() function
- Despite its name, it can send any signal
- You give it a pid and a signal
2) You can send signals from the shell with the kill command
- A common useful invocation is:

This sends the SIGKILL signal to a process
- This is the command-line "force close" or "end process"!

Kernel – Device Drivers (Part 1):

Resource Allocation:

Who Took My Remote:
1) The OS, the overbearing micromanager that it is, keeps track of which process is
using every resource on the system
2) Each process has a list of resources that it's using

The indexes are like array indices!

No Touch-a My Remote!
1) The OS is the arbiter of who gets to access what things, and when

It’s Not Just Files:
1) The OS keeps track of every resource like this

Limits:
1) The sysadmin (system administrator) has the ability to put limits on resources
that users/processes can have
2) The ulimit command lets you see and set those limits
- ulimit -a shows your limits
3) ulimit -u n is your best defense against forkbombing thoth!
- By default, you can run up to 512 processes

Þ this is absurd
- When you work on project 4, use e.g. ulimit -u 15

- It only lasts for this login; if you log into thoth again, you're back to 512
processes

Kernel Modules:

Cakes on Cakes:
1) Remember the cake??
2) Well the kernel has a whole buncha parts of its own

2) Scheduler is responsible for deciding which process gets a turn next
3) Memory and storage managers are… pretty self explanatory
4) Low-level CPU control code is complicated stuff to control caches, hardware
threading support, interrupts etc
5) Hardware access is all the stuff that talks to other hardware devices besides the
CPU and memory

Plug N’ Play:
1) How many kinds of hardware can you think of?

Intractable:
1) There are thousands upon thousands of pieces of hardware
2) Each one works differently
3) It's completely impractical to "bake" code to control that hardware into the
kernel itself
4) The kernel would be hundreds of terabytes
- and most of it would go unused

Like Plugins, but Way Scarier:
1) Many OS kernels support dynamic loading of kernel module
- Essentially, plugins for the kernel.

2) The kernel module IS EXECUTING IN THE KERNEL, IN KERNEL MODE.

How it Works:
1) When a kernel module is loaded…

Device Drivers:

Beep beep honk honk:
1) A device driver is a kind of kernel module which allows the kernel to
communicate with a piece of hardware. like a translator.

Kinds of Devices:
1) There are two broad classes of devices: pipes and notebooks.
- Uh, I mean character and block devices.

What Do You Think?
1) Which kind of device do you think each of these is?

If You Have Trouble Classifying Something…
 …either your classification scheme needs to be expanded
…or you should split up the complex thing into simpler parts.

Software Devices:
1) It's also useful to have "devices" which aren't really "devices" at all

The Kernel’s Virtual File Systems:

“File” System:
1) The POSIX filesystem is just a way of organizing names.
2) Virtual filesystems are directories which aren't on the hard drive.

3) in the case of AFS, you're still accessing files, they just happen to be located
elsewhere.
- But the abstraction of the filesystem lets us pretend like they're local files.

Opening New Doors:
1) Syscalls are fixed: you can't add new ones. but there's a loophole…

/dev/
1) /dev/ is the directory of devices, hardware and software.

/proc/
1) Oh boy. this has a lot of crap in it
2) The numbered directories are processes. they're the pids
- If you list one, you'll see all sorts of stuff…
- You can cat or less many of these "files" to get info
- The fd/ directory shows all open file descriptors – there's 0, 1, 2!
3) But then… they started dumping a bunch of other stuff in /proc/
- You can see the CPU info with /proc/cpuinfo
- You can see the OS version with /proc/version
- /proc/modules shows all the currently-loaded kernel modules
4) Then they were like "maybe we should stop throwing things in /proc

/sys/
1) A more modern way of accessing kernel features
2) It's much more hierarchical.
3) /sys/module/*/parameters are module "options"
- These wouldn't make sense as a device
- But these are how your control panel might do things like set how long your
screen stays on until it sleeps
4) Most of the stuff in /sys/ is pretty opaque to a normal user…

In Summary:
1) When a kernel module is loaded…
- It can create one or more devices which appear in /dev/
- It can create parameters which appear in /sys/module/
- You can interact with it through those files
2) The kernel itself also places things in /dev/, /proc/, and /sys/
3) This is all super flexible because everything is a file!
- No need to add a million syscalls!

Kernel – Device Drivers (Part 2):

Programming and Loading a Kernel Module:

Like User Mode Programs, But Not:
1) Inside the kernel, there are a lot of little differences.

The Module Lifecycle:
1) The two commands insmod and rmmod load and unload modules.

Module Dependencies:
1) Just like user mode libraries, modules can depend on other modules.

Hello Kernel!
1) Let's look at a very simple module: the hello world module.

Compiling It:
1) The Linux kernel comes with all the include files, libraries, linker scripts etc.
needed to compile kernel modules.
2) We just need to use a little Makefile (inside hellomod.tar)…
3) and use this command:
 make ARCH=i386
- If you forget the ARCH, it'll make a 64-bit module…
4) Now I can load it into my little Linux VM!

A Software Device Driver:

A More Substantial Example:
1) The hello_dev example shows a very simple driver.
2) In its init function, it calls misc_register(), a kernel function to say "hey, I
offer you a gift of this device."
- The hello_fops struct tells the kernel about the device.
- The hello_read function… well, it's the other side of read()!

Things to Watch Out For:
1) Say we had two devices in this module.

2) Restart entire computer to clean up memory leak.

Demonstration:
1) Let's look at the hello_dev example.
2) When loaded, it creates a device…
- Which doesn't actually show up in /dev/ yet.
- It does show up in /sys/class/misc.
3) If we cat /sys/class/misc/hello/dev we get
 10:63
4) These are the major and minor device numbers the OS gave it.
5) Now we run this command:
 mknod /dev/hello c 10 63
6) and if we do this:
 cat /dev/hello
7) It prints our message!!!

User-Mode Drivers:

Wait, what?
1) Doesn't that seem like a contradiction?
2) User-mode processes can't access hardware.
- ...directly. 😜
3) Remember the virtual filesystems?
- We can read/write the "files" in /dev and /sys to control kernel modules
- What if we took this further?

Privileges:
1) On a POSIX system, there are many users, and groups of users.
2) Each user group gets privileges: capabilities that other groups may not have.

3) “Privilege” -> "the things that you never have to worry about because of who
you are."

How User-Mode Drivers Work:
1) libusb is a common user-mode driver framework.
2) With it, you can control USB devices from user-mode daemons.

Why would we do this?
1) Remember what was scary about kernel modules?
2) Well, if our user-mode driver is evil or broken…
- Big deal! so what!
- It'll crash, because it's a user-mode process.
- Your device might stop working, but oh well. Restart the driver!
3) They're much easier to develop.
- You just saw how many steps there are to making a kernel module.
- and you have to have the privileges to install them.
- In user mode, you can use any language, use any user-mode library, you can
debug them in gdb, and compile and run them much more easily.

But Of Course There Are Downsides:
1) What'd you notice about that diagram?
2) How many times did we cross the user/kernel mode barrier?
- Once to do the original syscall…
- Once to get up into the driver…
- Once for the driver to do a syscall…
- Once for the OS to return to the driver…
- Once for the driver to return data to libusb…
- and once for libusb to return to the original process.
3) CONTEXT SWITCHES GALORE
- This makes them much slower than kernel-mode drivers
- Buuut sometimes it's worth it.

Þ You don't need crazy speed for a thing that blinks a light when you get an
email.

Excuse Me…
1) One more thing user-mode drivers can't do:

